PROGRAMA: Desenvolvimento de Tecnologia Ambiental

Subprograma: Tecnologia Ambiental

Efeito do pH e do Meio Eletrolítico na Retenção do Arsenato em Latossolo

Clarice Lima Amaral
Bolsista de Iniciação Científica, Engenharia Química, UFRJ
Ricardo Melamed
Orientador, Químico de Solos, Ph.D.

RESUMO

Os mecanismos de retenção do As sugerem que não só o pH é fundamental no processo, mas também o caráter dos metais e ligantes que compõe a base eletrolítica do meio. Esse trabalho visou estudar as interações do pH e dos íons que compõe o eletrólito suporte na retenção de As em Latossolo. A retenção de As diminui com o aumento do pH, refletindo a adsorção competitiva do arsenato e grupos OH. Soluções contendo Ca tendem a favorecer a adsorção de As em ampla faixa de pH.

1. INTRODUÇÃO

O arsênio (As) é um elemento tóxico importante na indústria mineral, especialmente na explotação do ouro, devido à associação do ouro a minérios contendo arsênio. Nos minérios onde o ouro ocorre livre, os rejeitos se constituem dos próprios minerais naturais de arsênio, que, ao serem descartados para o meio ambiente, podem se decompor liberando arsênio para os solos e cursos d'água. Nos minérios refratários, o processamento do ouro resulta na produção de efluentes com elevada concentração de arsênio, que devem ser estabilizados antes de reciclados para o processo ou liberados para o meio ambiente. No entanto, após dispostos, a estabilidade dos rejeitos arseniosos pode ser alterada devido a variações nos parâmetros físico-químicos no sítio de disposição, tornando o arsênio solúvel (1).

O uso de revestimento de argilas com alta capacidade de retenção de arsênio é uma técnica interessante, que pode ser utilizada na imobilização do arsênio solubilizado (2). A retenção de arsênio pelas argilas ocorre devido à complexação de

superfície envolvendo troca de ligantes e nucleação (3). Os mecanismos de retenção sugerem que não só o pH é fundamental no processo, mas também o caráter dos metais e ligantes que compõe a base eletrolítica do meio (2, 3).

2. OBJETIVO

Este trabalho visa estudar as interações do pH e dos íons que compõe o eletrólito suporte na retenção de As em Latossolo.

3. METODOLOGIA

O solo utilizado foi o Latossolo Vermelho-Escuro da região de Paracatu, MG. A difração de raios X indicou que o solo é constituido de quartzo, gibsita, vermiculita e goethita.

Primeiramente o solo foi peneirado abaixo de 1,68 mm, sendo em seguida homogeneizado e quarteado, por meio de uma série de pilhas.

Os experimentos de retenção de As no solo foram conduzidos por sistema em batelada, utilizando-se tubos centrífugos com 4g de solo. As soluções contendo arsênio nas concentrações 1,2; 2,8; 4,2; 5,6 e 7,2 mmol/L foram preparadas a partir de reagentes Merck. O volume total de solução em cada unidade experimental foi de 40 mL, com eletrólito suporte e força iônica definidos, resultando numa razão sólido:líquido igual a 1:10.

Os experimentos foram conduzidos em três níveis diferentes de pH (pH 3, 5 e 8). O controle do pH foi feito pela adição de HCl ou KOH. Os eletrólitos utilizados foram KCl e CaCl₂. As soluções dos eletrólitos foram preparadas mantendo-se a mesma força iônica (0,01 M).

Para a estimação da retenção de As no solo, os tubos centrífugos foram agitados durante 6 horas e centrifugados durante 15 minutos a 2500 rpm. O líquido sobrenadante foi separado e filtrado, através de papel milipore de 0,45 μm, e posteriormente analisado químicamente via espectrofotometria de absorção atômica. A retenção de As foi calculada da diferença entre a concentração inicial e a final.

4. RESULTADOS E DISCUSSÃO

A Figura 1 mostra o efeito do pH na retenção de arsênio, quando o $CaCl_2$ foi utilizado como meio eletrolítico. Observa-se que, com exceção do nível mais alto, a adsorção de As diminui com o aumento do pH, refletindo o caráter competitivo entre os grupos OH^- e o arsenato.

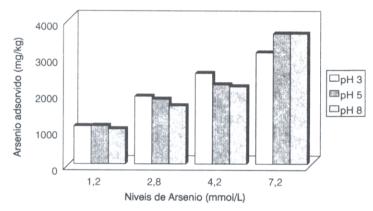


Figura 1 - Variação da adsorção de arsênio em função do pH, no sistema CaCl2

A equação 1 representa o mecanismo de troca de ligantes entre o grupo OH⁻ com o arsenato:

$$MeOH + H2AsO4- = MeO4AsH2 + OH-$$
 [1]

onde Me representa o metal componente da superfície do solo.

No entanto, no nível mais alto de As, a retenção aumenta com o pH. Os campos de estabilidade (Figura 2) (4) mostram que o arsenato de cálcio é estável numa faixa de pH relativamente ampla (pH 5 a 14, aproximadamente) quando a razão As/Ca é igual à unidade. À medida que a razão As/Ca diminui, o arsenato de cálcio só se forma a valores de pH mais elevados.

Portanto, esse desaparecimento do As (Figura 1) com o aumento do pH, no nível mais alto de As, é atribuido à precipitação química do arsenato de cálcio ($Ks = 10^{-18.2}$), resultando numa menor quantidade de As em solução.

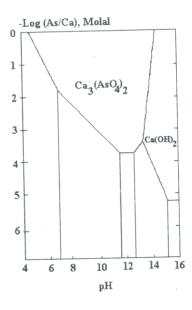


Figura 2 - Campos de estabilidade de As no sistema cálcio-arsenato-água

As isotermas de adsorção (Figuras 3 e 4) indicam que a retenção de As foi mais alta quando o meio eletrolítico utilizado foi o CaCl₂, do que quando o meio eletrolítico utilizado foi KCl. Esse efeito pode ser observado tanto a pH 3 (Figura 3) quanto em pH 5 (Figura 4).

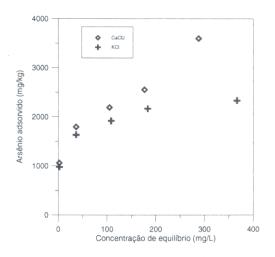


Figura 3 - Isotermas de adsorção de arsênio a pH 3, em dois sistemas eletrolíticos.

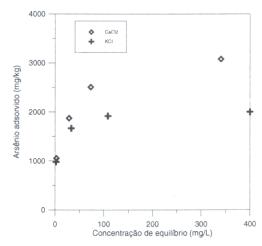


Figura 4 - Isotermas de adsorção de arsênio a pH 5, em dois sistemas eletrolíticos

O efeito do CaCl₂ favorecendo a retenção de As é atribuído à presença do Ca no eletrólito suporte. O fato do CaCl₂ ser eficiente mesmo a pH 3 contradiz prévios resultados (2), que indicam o favorecimento na retenção de As somente em valores de pH mais elevados. De modo geral, a complexação de esfera interna do Ca²+ à superficie promove um potencial na superficie do solo que favorece a complexação de esfera interna do As (5).

5. CONCLUSÕES

A retenção de As diminui com o aumento do pH, refletindo a adsorção competitiva do arsenato e dos grupos OH.

Soluções contendo Ca tendem a favorecer a adsorção de As em ampla faixa de pH.

BIBLIOGRAFIA

- 1. ROBINS, R.G., TOZAWA, K. Arsenic removal from gold processing waste waters: the potential ineffectiveness of lime. *CIM Bull.*, 75, p171. 1982.
- 2. MELAMED, R., NEUMANN, R., CARAGEORGOS T. Estudo de caracterização mineralógica, estabilidade e retenção de arsênio contido em rejeitos industriais na Rio Paracatu Mineração. RJ: CETEM/CNPg, 1996. (RT 029/96).
- 3. MELAMED. R. JURINAK, J.J. DUDLEY, L.M. Effect of adsorbed phosphate on transport of arsenate through an Oxisol. *Soil Sci. Soc. Am. J.* v.59. p.1289-1294. 1995.
- ROBINS, R.G. The solubility of metal arsenates. Metallurgical Transactions B. American Society for Metals and the Metallurgical Society of AIME. v.12B, p.103-109. 1981.
- BOLAN, N.S., BARROW, N.J. Modelling the effect of adsorption of phosphate and other anions on the surface charge of variable charge oxides. J. Soil Sci. v.35, p.273-281. 1984.

Aplicação de Rochas Fosfáticas em Solos de Disposição de Rejeitos para a Imobilização de Metais Pesados

Flávia Elias Trigueiro
Bolsista de Iniciação Científica, Engenharia Química, UERJ
Ricardo Melamed
Orientador, Químico de Solos, Ph.D.

RESUMO

O efeito da utilização de fosfato de rocha aplicado a Latossolo para a retenção de Zn e Cu foi estudado. Os resultados mostram que o fosfato aumenta a retenção dos metais no solo, a valores de pH na faixa ácida, constituindo-se em um método eficaz de retenção de metais em solos de disposição de rejeitos. O efeito do meio eletrolítico também foi abordado.

1. INTRODUÇÃO

Nos últimos anos, o crescimento do uso de metais pesados nas indústrias, principalmente na mínero-metalúrgica, resultou no aumento do fluxo de metais no ecossistema.

Esses metais, em sua maioria, podem formar complexos biomoleculares e, assim, são passíveis de serem acumulados pela cadeia alimentar, contaminando o ecossistema. O efeito tóxico desses metais em plantas e animais é relativo, porém os metais que formam complexos estáveis com ligantes, orgânicos ou inorgânicos, tendem a ser os mais tóxicos (1).

Os solos e sedimentos possuem a capacidade de reter os metais na sua superfície mineral ativa e pela presença de substâncias húmicas em sua composição, que funcionam como complexantes naturais (1). No entanto, os metais podem migrar pelo solo e, finalmente, alcançar as águas subterrâneas. A possibilidade de contaminação das águas subterrâneas, causada pela deposição de rejeitos em aterros sanitários, é uma grande preocupação ambiental (2).

0